СТРОИТЕЛЬНЫЕ МАТЕРИАЛЫ И СТРОИТЕЛЬНЫЕ ТЕХНОЛОГИИ В МЕТАЛЛУРГИИ

УДК 666.948

Мирюк О.А.

ГИДРАТАЦИЯ И ТВЕРДЕНИЕ МАГНИЙКРЕМНИЙСОДЕРЖАЩИХ АЛЮМИНАТНЫХ ЦЕМЕНТОВ

Расширение сырьевой базы сопровождается усложнением состава алюминатных цементов за счет магний- и кремнийсодержащих соединений. Фаза C_6A_4MS (для обозначения сложных формул ис пользова ны сокраще ния: C - CaO, $A - Al_2O_3$, M -MgO, $S - SiO_2$, $F - Fe_2O_3$, $H - H_2O$, $C\overline{S} - CaSO_4$), как возможная составляющая алюминатных цементов, представляет значительный интерес с точки зрения гидратации. По данным [1, 2], C_6A_4MS относится к числу нежелательных соединений, обладающих пониженной гидравлической активностью. Однако результаты исследований [3] указывают на яркое проявление гидратационной способности фазы. Противоречивость немногочисленных сведений о гидратации C_6A_4MS вызывает интерес к изучению вяжущих свойств магниевого силикоалюмината кальция.

На первом этапе исследованы процессы гидратации и твердения монофазного цемента, состоящего из C_6A_4MS . Магниевый силикоалюминат кальция синтезировали из стехиометрической смеси оксидов при температуре 1350° С. При измельчении спека получали порошок голубовато-белого цвета. Тонкость помола полученного цемента составила 2,5% остатка на сите № 008. Свойства цементного теста исследовали на облегченном приборе Вика. Физико-механические испытания проводили на призмах размером $1\times1\times6$ см, изготовленных из теста нормальной густоты и твердевших в воде. Для сравнения вяжущих свойств использовали специально синтезированные фазы CA и $C_{12}A_7$, составляющие основу алюминатных цементов.

Таблица 1 Прочностные показатели монофазных цементов

Фаза цемента	Предел прочности, МПа, в возрасте, сут										
	при изгибе						при сжатии				
	1	3	28	360	3600	1	3	28	360	3600	
CA	11	18	24	21	10	63	74	101	91	52	
C ₁₂ A ₇	5	7	8	6	2	37	42	35	20	10	
C ₆ A ₄ MS	10	16	19	27	17	52	68	90	124	70	

Идентичность условий экспериментов позволила выявить основные сходства и различия процессов гидратации и твердения алюминатных фаз. Пробы разрушенных при испытании образцов анализировали с помощью дифрактометрического и дифференциально-термического методов.

Физико-механические свойства цементов, охарактеризованные в **табл. 1**, свидетельствуют о достаточно высоких прочностных показателях C_6A_4MS . По интенсивности твердения цемент из магниевого силикоалюмината кальция имеет сходства с моноалюминатным вяжущим. Показатели ранней прочности C_6A_4MS составляют 80% таковых значений CA. С течением времени твердения это различие уменьшается.

Цементный камень на основе C_6A_4MS характеризуется стабильным упрочнением при длительном твердении, меньшим сбросом прочности в многолетнем возрасте.

По данным термического анализа, интенсивность взаимодействия исследуемых фаз с водой уменьшается в ряду: $C_{12}A_7 \rightarrow CA \rightarrow C_6A_4MS$. Количество связанной воды в гидратированных цементах к 3 сут твердения составило, %: $C_{12}A_7 - 28$, CA - 23, $C_6A_4MS - 16$. Для магниевого силикоалюмината кальция, твердевшего 28 и 360 сут, эта величина достигла соответственно 19 и 25%.

Степень гидратации C_6A_4MS , определенная дифрактометрическим методом, равна, %: в возрасте 1 сут — 15; 3 сут — 28; 7 сут — 32; 14 сут — 39; 28 сут — 48; 360 сут — 65. Для главной фазы глинозем истых цементов CA степень гидратации к 3 сут достигла 56%, к 28 сут — 75%. Степень гидратации $C_{12}A_7$, активной по отношению к воде фазы, составила 69% в возрасте 3 сут и 87% к 28 сут твердения.

Данные о составе и содержании главных новообразований при гидратации исследуемых фаз получены при исследовании дифрактограмм (рис. 1) и приведены в табл. 2. Кристаллическую основу цементного камня из C_6A_4MS составляют гексагональные гидраты C_4H_{10} , C_2AH_8 и C_4AH_{13} . По срав-

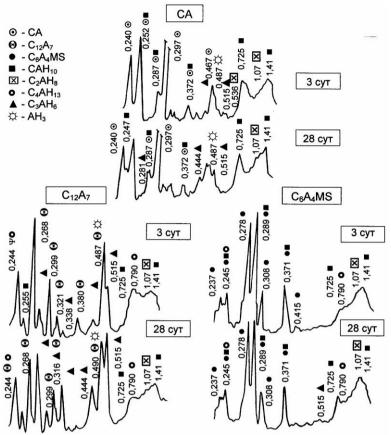


Рис. 1. Дифрактограммы гидратированных алюминатных фаз

нению с гидратированными CA и $C_{12}A_7$ в камне из C_6A_4MS кубический гидроалюминат кальция C_3AH_6 образуется в более поздние сроки, его содержание весьма незначительно. По составу гидроалюминатов кальция камень на основе C_6A_4MS занимает промежуточное положение между гидратированными CA и $C_{12}A_7$. По содержанию гидратов C_6A_4MS близка к CA. Наличие высокоосновного гидроалюмината кальция C_4AH_{13} свидетельствует о некотором сходстве C_6A_4MS и $C_{12}A_7$. Отмеченные особенности обусловлены характером изменения величины мольной основности исследуемых фаз: CA - 0,55; $C_6A_4MS - 0,66$; $C_{12}A_7 - 0,94$.

Результаты дифференциально-термического анализа (ДТА) подтверждают и дополняют данные рентгенофазовых исследований. Эндоэффект при $130{\text -}160^{\circ}\text{C}$ на термограммах цементного камня из C_6A_4MS различного возраста указывает на присутствие гексагональных гидроалюминатов кальция (рис. 2). Отмеченный термический эффект свидетельствует также о наличии тоберморитового геля, образованного при гидратации кремнийсодержащей части фазы C_6A_4MS .

Эндоэффект при 320°С, характеризующий присутствие C_3AH_6 и AH_3 , выразителен на термограмме гидратированного C_6A_4MS только по ис-

течении 1 года. Сравнение кривых ДТА обнаруживает сходство термоэффектов гидратированных фаз CA и C_6A_4MS . Различие в сроках твердения сопоставляемых цементов указывает на замедленное формирование при гидратации C_6A_4MS фаз, характерных для CA. Это свидетельствует о повышенной устойчивости гидратных соединений в кам не из C_6A_4MS .

По данным дифрактометрического анализа, основными кристаллогидратами цементного камня из C_6A_4MS , твердевшего в течение 10 лет, являются C_3AH_6 и AH_3 . Полная перекристаллизация гексагональных гидроалюминатов кальция обусловила снижение прочности материала в этот период (см. **табл. 1**). По сравнению с CA, гидратированным в аналогичных условиях, в камне из C_6A_4MS содержание C_3AH_6 в 1,2 раза больше, доля AH_3 в 2,6 раза меньше.

Незначительная доля кристаллического гиббсита обусловлена меньшей концентрацией глинозема в составе исходной фазы, а также сохранением гелеобразного AH_3 . Повышенное количество гелевой фазы препят-

ствовало резкому спаду прочности камня в отдаленный период твердения.

Гидратообразование C_6A_4MS основано на гидролизе, способствующем формированию гексагональных гидроалюминатов кальция, гелей гидрооксидов кремния, магния, алюминия. Поверхность алюминатных частиц покрывается пленками гелевой массы, снижающей скорость гидратации.

Повышенная устойчивость гексагональных гидроалюминатов кальция к перекристаллизации в кубическую форму достигается стабилизирующим влиянием гидратированных магний— и кремнийсодержащих ионов, образованных при гидролизе C_6A_4MS . Вероятно также сохранение гидросиликатного геля.

Таблица 2 Состав и содержание основных гидратов

	Интенсивность отражений, отн.ед., гидратов на												
	рентгенограмме цементного камня в возрасте, сут												
Фаза	CA	H ₁₀	C_2AH_8		C ₄ AH ₁₃		C ₃ AH ₆		AH₃				
	(1,41нм)		(1,07 нм)		(0,79 нм)		(0,51 нм)		(0,48 нм)				
	3	28	3	28	3	28	3	28	3	28			
CA	21	26	16	19	нет	нет	7	16	11	17			
C ₁₂ A ₇	17	19	17	18	19	15	20	42	10	16			
C_6A_4MS	18	21	17	22	12	12	нет	3	нет	нет			

Проявление вяжущих свойств C_6A_4MS , отличающее фазу от структурно родственной C_2AS , предопределено уменьшением доли кремнекислородных тетраэдров и степени их ассоциации; нерегулярной координацией ионов кальция, равной 6 и 7. С другой стороны, замедленная, по сравнению с CA, гидратация C_6A_4MS обусловлена наличием в структуре менее активных $[(Al,Mg)O_4]$, $[SiO_4]$. Соединение тетраэдров как вершинами, так частично и ребрами повышает устойчивость фазы к гидролизу [4].

Результаты исследований подтверждают данные о высокой гидравлической активности магниевого силикоалюмината кальция и указывают на целесообразность его присутствия в клинкере.

Разработана методика расчета состава трехкомпонентных магнийкремний-содержащих смесей для алюминатных клинкеров, учитывающая образование C_6A_4MS . Для характеристики состава сырьевой шихты и клинкера введены модули: основности a, кремнеземный n и магнезиальный m.

Модуль основности a выражает степень насыщения глинозема оксидом кальция и характеризует соотношение ($CaO:Al_2O_3$):

$$a = \frac{C - 1,87S - 1,05F - 0,70\overline{S}}{0,55A}.$$
 (1)

При значениях $a \ge 1$ в клинкере исключается образование инертного геленита C_2AS .

Кремнеземный модуль n выражает долю SiO_2 ,

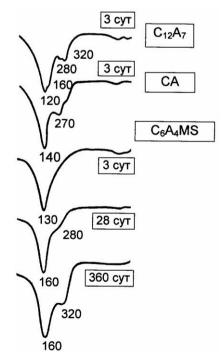


Рис. 2. Термограммы гидратированных алюминатных фаз

связанного в C_6A_4MS , и соотношение между алюминатными и силикатными фазами клинкера:

$$n = \frac{0.147A}{S} \,. \tag{2}$$

Магнезиальный модуль m характеризует отношение MgO, необходимого для связывания Al_2O_3 в C_6A_4MS , к общей концентрации MgO:

$$m = \frac{0,099A}{M} \,. \tag{3}$$

Для м иним иза ции с одержания C_2S и ограничения доли своб одного MgO в клинкере целесообразны повышенные значения модулей: n>0,5; m>0,5.

Правомерность расчетов по предложенной методике подтверждена синтезом клинкеров с различным содержанием C_6A_4MS , отличающихся значением кремнеземного модуля (табл. 3). Сырьевые шихты составлены из доломитизированного известняка и технического глинозема, в качестве корректирующей кремнеземсодержащей добавки использованы отходы обогащения скарново-магнетитовых руд. Смеси обжигали при температуре $1300-1370^{\circ}$ С до завершения клинкерообразования.

Прослеживается влияние химического состава смесей на характер их поведения при обжиге. Интенсивность усвоения CaO при спекании смесей возрастает по мере увеличения кремнеземистой добавки в ряду: $K-1,5 \rightarrow K-1,0 \rightarrow K-0,5$. Дифрактометрический анализ свидетельствует о преобладании в клинкерах магниевого силикоалюмината кальция и корреспондируется с расчетными данными (см. **табл. 3**).

Таблица 3
Влияние кремнеземного модуля на состав
и свойства алюминатных клинкеров

Показатели	Клинкер					
TIONASAT CITY	K-1,5	K-1,0	K-0,5			
Модуль основности a	1,0	1,0	1,0			
Кремнеземный модуль <i>п</i>	1,5	1,0	0,5			
Магнезиальный модуль <i>т</i>	0,9	0,8	0,6			
Фазовый состав, %:						
$-C_6A_4MS$	67	84	58			
$-3(CA)C\overline{S}$	7	8	11			
$-C_4AF$	5	6	10			
- CA	20	нет	нет			
$-C_2S$	нет	нет	17			
– MgO (свободный)	0,6	1,3	3,4			
Предел прочности при сжатии, М Па:						
– 1 сут	57	51	39			
– 7 сут	83	79	67			
– 28 сут	105	115	94			

Таблица 4

Магниевый силикоалюминат кальция — предпочтительная магнийкремнийсодержащая фаза алюминатных клинкеров. При формировании C_6A_4MS происходит взаимная «нейгрализация» нежелательных для алюминатных клинкеров примесей SiO_2 и MgO. Образование C_6A_4MS сопровождается уменьшением или исключением из состава клинкера фаз с низкой гидратационной активностью C_2AS , C_2S и MgO.

Гидравлическая активность клинкеров зависит от содержания алюминатных фаз и достигает наибольших показателей при повышенных значениях кремнеземного модуля ($n \ge 1$). Наличие моноалюмината кальция в клинкере K-1,5 обеспечивает ускоренное твердение в ранний период. Общее содержание MgO в клинкерах состава K-1,5; K-1,0 и K-0,5 превышает рекомендуемый предел и соответственно равно, мас.%: 5,1; 5,4; 6,1. Однако основная часть оксида магния связана в магниевый силикоалюминат кальция. Концентрация периклаза невелика (см. табл. 3) и не вызывает деструктивных изменений цементного камня при твердении.

Исследованы процессы гидратации и твердения цемента, полученного из клинкера (табл.4) с высоким содержанием магниевого силикоалюмината кальция.

Цемент характеризуется умеренной скоростью схватывания, интенсивным твердением в первые 3 сут, стабильным нарастанием прочности и сохранением ее высоких показателей при длительном твердении (табл. 5).

Характер гидратооб разования в исследуемом цементе отражает особенности гидратации чистой фазы C_6A_4MS . Анализ дифрактограмм цемента в ранние сроки гидратации (**рис. 3**) свидетельствует о первоначальном появлении гидрата C_4AH_{13} (d=0,804 нм), последующем образовании C_4AH_{10} (d=1,43; 0,716 нм), C_2AH_8 (d=1,08 нм). На рентгенограмме камня суточного возраста появляются слабые отражения эттрингита (d=0,98), выделившегося при гидратации сульфоалюмината кальция. В период 1–3 сут фазовый состав гидратных образований меняется незначительно.

Стабильное нарастание прочности цементного камня в течение длительного твердения связано с повышенной устойчивостью гексагональных гидроалюминатов кальция, низкой скоростью их перекристаллизации. В цементе, твердевшем 10 лет, обнаружен CAH_{10} (d=1,43; 0,720; 0,375; 0,255 нм), содержание которого превышает долю C_3AH_6 (d=0,514; 0,336; 0,278; 0,228; 0,202 нм) и AH_3 (d=0,482; 0,440; 0,240 нм).

Следовательно, разработанная методика расчета состава сырьевой смеси позволяет расширить возможности направленного регулирования

Характеристики клинкера

N	/ одул	И	Содержание основных фаз, % (по расчету)								
а	n	m	C_6A_4MS	C_3A	$C_{12}A_7$	$3(CA)C\overline{S}$	C_4AF				
1,10	0,98	1,01	55	12	11	15	7				

Таблица 5

Основные характеристики цемента

Остаток на сите № 008, %	Нор- маль- ная густота, %	Сроки схватыва- ния, ч – мин			Предел прочности при изгибе / сжатии, МПа, в возрасте, сут					
		на- чало	ко- нец	пе- риод	1	3	7	14	28	3600
1,1	27,7	1–55	2–50	0–55	<u>8</u> 41	<u>15</u> 70	<u>16</u> 72	<u>16</u> 87	<u>17</u> 99	<u>10</u> 70

● C_6A_4MS ; Ø C_3A ; ♦ $C_{12}A_7$; Θ $3(CA)C\overline{S}$; \Box AH_3 ; ■ CAH_{10} ; \Box C_2AH_6 ; \blacktriangle C_3AH_6 ; • C_4AH_{13} ; \Box $C_3A \cdot 3C\overline{S} \cdot 31H_2O$

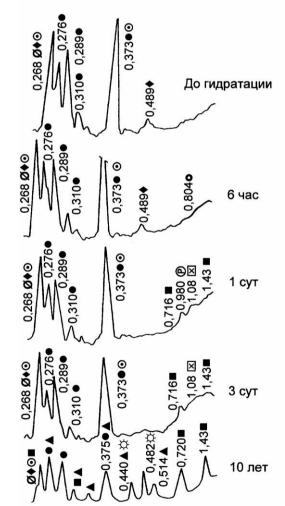


Рис. 3. Дифрактограммы гидратированного цемента

СТРОИТЕЛЬНЫЕ МАТЕРИАЛЫ И СТРОИТЕЛЬНЫЕ ТЕХНОЛОГИИ В МЕТАЛЛУРГИИ

фазового состава алюминатных клинкеров посредством предварительного выбора соответствующих значений модулей a, n, m. Расчет по новой методике предполагает оптимизацию содержания MgO и SiO_2 в сырьевых смесях, снижение отрицательного влияния силикатных фаз на свойства цементов.

Анализ результатов исследований позволяет выделить особенности гидратации и твердения магниевого силикоалюмината кальция:

- замедленная гидратация и, как следствие, более плавная кристаллизация устойчивых магнийкремнийсодержащих гексагональных гидроалюминатов кальция, формирующих каркас цементного кам ня;
- продолжительность существования гексагональных гидроалюминатов кальция, достигаемая стабилизирующим влиянием гидратированных магний- и кремнийсодержащих ионов, образованных при гидролизе исходной фазы C_6A_4MS

и внедренных в структуру матрицы.

- обилие гелеобразных соединений на протяжении длительного периода твердения подавляет рост и соединяет кристаллические гидраты, способствует снижению напряжений в твердеющей системе;
- стабильное упрочнение цементного камня при длительном твердении и меньший спад прочности в многолетнем возрасте.

Высокая гидравлическая активность и характер твердения C_6A_4MS свидетельствуют о целесообразности формирования фазы в цементных клинкерах и ее использования в качестве самостоятельного вяжущего. Возможность синтеза активных специальных клинкеров с повышенным содержанием MgO, SiO_2 способствует широкому вовлечению в цементное производство доломитизированных известняков, глиноземсодержащих материалов с низким кремниевым модулем, техногенного сырья.

Библиографический список

- 1. Кузнецова Т.В., Талабер Й. Глиноземистый цемент. М.: Стройиздат, 1988. 272 с.
- 2. Бережной А.С. Многокомпонентные щелочные оксидные системы. Киев: Наук. думка, 1988. 200 с.
- 3. Васильченко Ю.В., Лугинина И.Г. Тампонажные материалы для цементирования низкотемпературных скважин // Энергосберегающая технология строительных материалов. Белгород: БТИСМ, 1988. С. 8 –12.
- 4. Капралик И., Ганиц Ф. Изучение системы CaO-MgO-Al₂O₃-SiO₂ по отношению к фазе Q // Тезисы докладов 2 советскочехослов. симпозиума по строению и свойствам силикатных и оксидных систем. Л.: Наука, 1981. С. 10 −13.